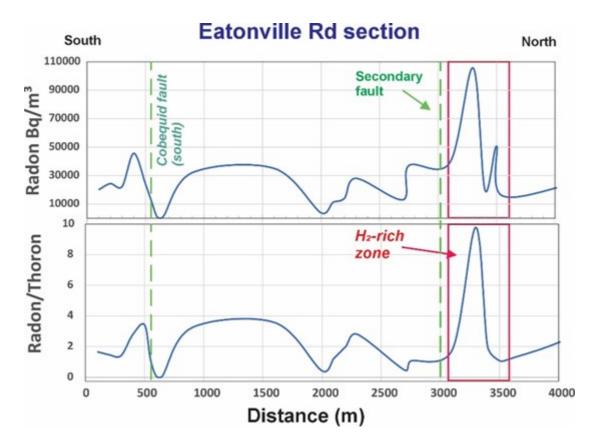
Quebec Innovative Materials Announces Winter Drilling in Nova Scotia with New High Hydrogen Data Confirming a Deep Natural Hydrogen System

Montreal, Quebec--(Newsfile Corp. - November 12, 2025) - Québec Innovative Materials Corp. (CSE: QIMC) (OTCQB: QIMCF) (FSE: 7FJ) ("QIMC" or the "Company") is pleased to announce winter drilling program in West Advocate with new results from its ongoing hydrogen and radon-thoron exploration work in Nova Scotia's Cobequid Fault region. The latest data in West Advocate confirm the presence of a structurally controlled, deep-seated clean **natural hydrogen system**, directly guiding the Company's **priority drill-targets for the upcoming winter drilling program**. Vitaly Vidavskiy of Avalio, a world-renowned expert in natural hydrogen, will provide advisory services on the initial winter drilling program.

"Today's announcement of our initial winter drilling program at West Advocate marks another significant milestone for Québec Innovative Materials Corp. (QIMC) and our Nova Scotia Clean Natural Hydrogen Project," said John Karagiannidis, President & CEO of QIMC.


"Our priority drill targets for the upcoming winter season are centered on the West Advocate area, where hydrogen measurements have demonstrated remarkable consistency across three consecutive field seasons. Recent surface readings-reaching up to 4,300 ppm-combined with subsurface rock samples exceeding 1,000 ppm, confirm the presence of a robust and dynamic natural hydrogen system. The strong correlation observed between radon, thoron, and hydrogen across multiple datasets further supports the interpretation of an active, advective, and abiotic hydrogen flow.

"As we advance in our drilling program these results mark a decisive step toward confirming one of the most compelling natural hydrogen systems identified in North America."

Recent soil-gas sampling in the **West Advocate** area returned **hydrogen concentrations of 3,800 ppm and 4,300 ppm**, obtained during the first week of November. These new results demonstrate remarkable **consistency across three distinct sampling seasons and temperature regimes**, underscoring the **dynamic**, **advective**, **and abiotic** nature of the hydrogen system. **Importantly**, **these high hydrogen measurements were recorded with no detectable COI**, **methane**, **or sulfur gases**, confirming the clean, abiotic origin of the emissions. Additional measurements exceeding **1,000 ppm directly on exposed bedrock at a depth of over three meters**, without overburden interference, further confirm the **surface-to-subsurface correlation** in hydrogen emissions. Collectively, these findings validate QIMC's exploration model for fault-controlled natural hydrogen migration systems in sedimentary and crystalline rock environments.

Clean Natural hydrogen system

"The radon survey section along Eatonville Road (Figure 1) demonstrates the effectiveness of radon measurements in locating zones of higher permeability associated with secondary faults in the West Advocate area," said **Prof. Marc Richer-Laflèche** of the **Institut National de la Recherche Scientifique (INRS)**. "These areas are characterized by very high radon concentrations and elevated radon/thoron ratios. The presence of very high radon concentrations-exceeding 100,000 becquerels per cubic meter-and moderate thoron levels suggests, a priori, the existence of advective transport systems that extend deep enough for thoron, with its short half-life of 55.6 seconds, to decay in comparison with radon, which has a much longer half-life of 3.8 days."

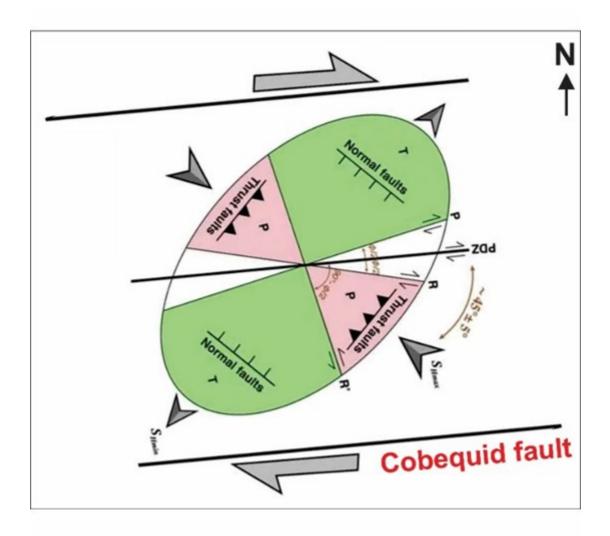


Figure 1. 4,000-meter section showing radon concentrations measured in fall 2025 along Eatonville Road in the West Advocate sector.

To view an enhanced version of this graphic, please visit: https://images.newsfilecorp.com/files/7968/274101 354880b834ac48a6 001full.jpg

"These high radon concentrations are observed within a tectonically complex zone characterized by basement uplift, deformation of sedimentary rocks, and an environment strongly influenced by the Cobequid Fault Zone," continued Prof. Richer-Laflèche. "In West Advocate, preliminary data highlight the importance of secondary structures located north of the southern branch of the Cobequid Fault (Fig. 1). Given that the Cobequid Fault Zone has a significant dextral (right-lateral) strike-slip component, secondary structures parallel or at a low angle to the main fault (P-shears) may partly or entirely control the upward transfer of radon and hydrogen toward the subsurface. In addition, more oblique structures suggested by LiDAR and topographic data could also facilitate the migration of these gases."

"In the structural context of the Cobequid Fault Zone," he added, "these structures may represent secondary thrust faults (NE-SW) or normal faults (NW-SE) (Fig. 2). Such secondary fault environments are conducive to the formation of cataclasites and breccia zones, which enhance rock permeability and the circulation of fluids and gases such as hydrogen and radon. Cataclastic rocks are frequently reported on geological maps of the Cobequid Highlands. It is also important to note that mature, segmented strike-slip fault zones often show alternating permeable and sealed segments-apparently the case in the southern portion of the Cobequid Fault Zone, where radon and hydrogen anomalies are absent along part of the Eatonville Road section (Fig. 1)."

Figure 2. Diagram illustrating the formation of secondary thrust and collapse zones (normal faults) associated with a dextral strike-slip fault system. Modified from Zhao et al., 2025.

To view an enhanced version of this graphic, please visit: https://images.newsfilecorp.com/files/7968/274101 354880b834ac48a6 002full.jpg

"The structural complexity and low density of rock outcrops in the Cobequid Highlands near West Advocate require the implementation of geophysical surveys to accurately locate and characterize the various fault systems that intersect bedrock units and to correlate them with hydrogen and radon anomalies observed in soils. These surveys will be carried out from **November 2025 through January 2026**."

Initial Winter Drilling program

Following the identification of West Advocate for the initial winter drill program, **QIMC and INRS** are advancing into the third and fourth phases:

- Conduct a large-scale gravimetric survey (1,000 stations) across the West and East Advocate areas.
- Carry out **audiomagnetotelluric (AMT) surveys** over approximately **17 km** to map deep geological structures underlying hydrogen- and radon-rich domains.
- Perform high-resolution geoelectrical tomography (sections over 1,000 m) in key areas to produce detailed imaging of fractured bedrock immediately beneath hydrogen-rich soil zones.
- Acquire **ground-based TDEM (Time-Domain Electromagnetic)** data of very high spatial

resolution to locate fracture corridors of interest for hydrogen exploration.

These datasets will be jointly interpreted with fall 2025 soil-gas hydrogen measurements and radon-thoron results. The resulting integrated geological and geophysical models will guide **drilling targets in West Advocate for QIMC's Winter initial drill program**.

The gravimetric survey began in mid-October and is expected to conclude in mid-November 2025. The audiomagnetotelluric and electrical-resistivity surveys will be conducted from late November through approximately **December 20, 2025**.

About Québec Innovative Materials Corp. (QIMC)

Quebec Innovative Materials Corp. (CSE: QIMC) (OTCQB: QIMCF) (FSE: 7FJ) is a mineral exploration and development company dedicated to exploring and harnessing the potential of North America's abundant resources. With properties in Ontario, Quebec, Nova Scotia and Minnesota (US), QIMC is focused on specializing in the exploration of white (natural) hydrogen and high-grade silica deposits. QIMC is committed to sustainable practices and innovation. With a focus on environmental stewardship and cutting-edge extraction technology, we aim to unlock the full potential of these materials to drive forward clean energy solutions to power the AI and carbon-neutral economy and contribute to a more sustainable future.

For more information please contact:

QUÉBEC INNOVATIVE MATERIALS CORP.

John Karagiannidis President & CEO

Email: info@gimaterials.com

Tel: +1 514-726-7058

Reference

Zhao, Y., Gong, W., Tang, H., Li, Z., Xiong, W., Wang, L., & Pudasaini, S. P. (2025). Numerical insights into the effect of normal stress on stick-slip characteristics in faults with granular gouge. Journal of Geophysical Research: Solid Earth, 130, e2025JB032146. https://doi.org/10.1029/2025JB032146

Neither the Canadian Securities Exchange nor its Regulation Services Provider (as that term is defined in the CSE policies) accepts responsibility for the adequacy or accuracy of this news release and has neither approved nor disapproved the contents of this news release.

Forward-Looking Statements

This news release contains statements that constitute "forward-looking statements". Such forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause Québec Innovative Materials' actual results, performance or achievements, or developments in the industry to differ materially from the anticipated results, performance or achievements expressed or implied by such forward-looking statements. Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by the words "expects," "plans," "anticipates," "believes," "intends," "estimates," "projects," "potential" and similar expressions, or that events or conditions "will," "would," "may," "could" or "should" occur.

Although Québec Innovative Materials believes the forward-looking information contained in this news release is reasonable based on information available on the date hereof, by their nature, forward-looking statements involve assumptions, known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements, or other future events, to be materially different from any future results, performance or achievements expressed or implied by

such forward-looking statements.

Examples of such assumptions, risks and uncertainties include, without limitation, assumptions, risks and uncertainties associated with general economic conditions in Canada and abroad; adverse industry events; future legislative and regulatory developments in the natural resources sector, in particular as regards the regulation of white (natural) hydrogen exploration, development and exploitation; the Company's ability to access sufficient capital from internal and external sources, and/or inability to access sufficient capital on favorable terms; natural resources industry and markets in Canada and generally; the ability of Québec Innovative Materials to implement its business strategies; competition; and other assumptions, risks and uncertainties.

The forward-looking information contained in this news release represents the expectations of the Company as of the date of this news release and, accordingly, is subject to change after such date. Readers should not place undue importance on forward-looking information and should not rely upon this information as of any other date. While the Company may elect to, it does not undertake to update this information at any particular time except as required in accordance with applicable laws.

Cautionary Statements This news release contains "forward-looking information" and "forward-looking statements" within the meaning of applicable Canadian securities legislation. These statements are based on expectations, estimates, and projections as of the date of this release. Forward-looking statements involve risks and uncertainties, which may cause actual results to differ materially from current expectations. Readers are cautioned not to place undue reliance on these statements, as no assurance can be provided regarding future outcomes.

To view the source version of this press release, please visit https://www.newsfilecorp.com/release/274101